Show simple item record

dc.contributor.authorAgustin, I. H.
dc.contributor.authorUtoyo, M. I.
dc.contributor.authorDafik
dc.contributor.authorVenkatachalam, M.
dc.contributor.authorSurahmat
dc.date.accessioned2021-11-03T02:29:57Z
dc.date.available2021-11-03T02:29:57Z
dc.date.issued2020-10-01
dc.identifier.urihttps://doi.org/10.1155/2020/7812812
dc.identifier.urihttp://repository.unisma.ac.id/handle/123456789/2286
dc.description[ARCHIVES] Copyright Article from : International Journal of Mathematics and Mathematical Sciencesen_US
dc.description.abstractA total k-labeling is a function fe from the edge set to first natural number ke and a function fv from the vertex set to non negative even number up to 2kv, where k � max ke, 2kv � �. A vertex irregular reflexive k-labeling of a simple, undirected, and finite graph G is total k-labeling, if for every two different vertices x and x′ of G, wt(x) ≠ wt(x′), where wt(x) � fv(x) + Σxy∈E(G)fe(xy). )e minimum k for graph G which has a vertex irregular reflexive k-labeling is called the reflexive vertex strength of the graph G, denoted by rvs(G). In this paper, we determined the exact value of the reflexive vertex strength of any graph with pendant vertex which is useful to analyse the reflexive vertex strength on sunlet graph, helm graph, subdivided star graph, and broom graph.en_US
dc.language.isoenen_US
dc.publisherHindawien_US
dc.relation.ispartofseriesInternational Journal of Mathematics and Mathematical Sciences;Volume 2020, Article ID 7812812, 8 pages
dc.titleOn the Construction of the Reflexive Vertex k-Labeling of Any Graph with Pendant Vertexen_US
dc.typeArticleen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record